19 resultados para Design for manufacture and assembly

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – To present key challenges associated with the evolution of system-in-package technologies and present technical work in reliability modeling and embedded test that contributes to these challenges. Design/methodology/approach – Key challenges have been identified from the electronics and integrated MEMS industrial sectors. Solutions to optimising the reliability of a typical assembly process and reducing the cost of production test have been studied through simulation and modelling studies based on technology data released by NXP and in collaboration with EDA tool vendors Coventor and Flomerics. Findings – Characterised models that deliver special and material dependent reliability data that can be used to optimize robustness of SiP assemblies together with results that indicate relative contributions of various structural variables. An initial analytical model for solder ball reliability and a solution for embedding a low cost test for a capacitive RF-MEMS switch identified as an SiP component presenting a key test challenge. Research limitations/implications – Results will contribute to the further development of NXP wafer level system-in-package technology. Limitations are that feedback on the implementation of recommendations and the physical characterisation of the embedded test solution. Originality/value – Both the methodology and associated studies on the structural reliability of an industrial SiP technology are unique. The analytical model for solder ball life is new as is the embedded test solution for the RF-MEMS switch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033. The fire simulations include the action of a water mist system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a framework to integrate requirements management and design knowledge reuse. The research approach begins with a literature review in design reuse and requirements management to identify appropriate methods within each domain. A framework is proposed based on the identified requirements. The framework is then demonstrated using a case study example: vacuum pump design. Requirements are presented as a component of the integrated design knowledge framework. The proposed framework enables the application of requirements management as a dynamic process, including capture, analysis and recording of requirements. It takes account of the evolving requirements and the dynamic nature of the interaction between requirements and product structure through the various stages of product development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today most of the IC and board designs are undertaken using two-dimensional graphics tools and rule checks. System-in-package is driving three-dimensional design concepts and this is posing a number of challenges for electronic design automation (EDA) software vendors. System-in-package requires three-dimensional EDA tools and design collaboration systems with appropriate manufacturing and assembly rules for these expanding technologies. Simulation and Analysis tools today focus on one aspect of the design requirement, for example, thermal, electrical or mechanical. System-in-Package requires analysis and simulation tools that can easily capture the complex three dimensional structures and provided integrated fast solutions to issues such as thermal management, reliability, electromagnetic interference, etc. This paper discusses some of the challenges faced by the design and analysis community in providing appropriate tools to engineers for System-in-Package design

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solder paste plays an important role in the electronic assembly process by providing electrical, mechanical and thermal bonding between the components and the substrate. The rheological characterisation of pastes is an important step in the design and development of new paste formulations. With the ever increasing trend of miniaturisation of electronic products, the study of the rheological properties of solder pastes is becoming an integral part in the R&D of new paste formulations and in the quality monitoring and control during paste manufacture and electronic assembly process. This research work outlines some of the novel techniques which can be successfully used to investigate the rheology of leadfree solder pastes. The report also presents the results of the correlation of rheological properties with solder paste printing performance. Four different solder paste samples (namely paste P1, P2, P3 and P4) with different flux vehicle systems and particle size distributions were investigated in the study. As expected, all the paste samples showed shear thinning behaviour. Although the samples displayed similar flow behaviour at high shear rates, differences were observed at low shear rates. In the stencil printing trials, round deposits showed better results than rectangular deposits in terms of paste heights and aperture filling. Our results demonstrate a good correlation between higher paste viscosity and good printing performance. The results of the oscillatory and thixotropy tests were also successfully correlated to the printing behaviour of solder paste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes the design of an efficient and robust genetic algorithm for the nuclear fuel loading problem (i.e., refuellings: the in-core fuel management problem) - a complex combinatorial, multimodal optimisation., Evolutionary computation as performed by FUELGEN replaces heuristic search of the kind performed by the FUELCON expert system (CAI 12/4), to solve the same problem. In contrast to the traditional genetic algorithm which makes strong requirements on the representation used and its parameter setting in order to be efficient, the results of recent research results on new, robust genetic algorithms show that representations unsuitable for the traditional genetic algorithm can still be used to good effect with little parameter adjustment. The representation presented here is a simple symbolic one with no linkage attributes, making the genetic algorithm particularly easy to apply to fuel loading problems with differing core structures and assembly inventories. A nonlinear fitness function has been constructed to direct the search efficiently in the presence of the many local optima that result from the constraint on solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design for manufacture of system-in-package (SiP) structures is dependent on a number of physical processes that affect the final quality of the package in terms of its performance and reliability. Solder joints are key structures in a SiP and their behavior can be the critical factor in terms of reliability. This paper discusses the results from a research programme on design for manufacturing of system in package (SiP) technologies. The focus of the paper is on thermo-mechanical modelling of solder joints. This includes the behavior of the joints during testing plus some important insights into the reflow process and how physical phenomena taking place at the assembly stage can affect solder joint behavior. Finite element analysis of a numerical model of an SiP structure with various design parameters is discussed. The goal of this analysis is to identify the most promising combination of design parameters which guarantee longer lifetime of the solder joints and hence the SiP component. The parameters that were studied are the size of the package (i.e. number of solder joints per row), the presence of the underfill and/or the reinforcement as well as the thickness of the passive die. Discussion was also provided on phenomena that take place during the reflow process where the solder joints are formed. In particular, the formation of intermetallics at the solder-pad interfaces

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the employment of semantic and conceptual structures in module design, specifically course modules. Additionally, it suggests other uses of these structures in aiding teaching and learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article consists of a PowerPoint presentation on integrated reliability and prognostics prediction methodology for power electronic modules. The areas discussed include: power electronics flagship; design for reliability; IGBT module; design for manufacture; power module components; reliability prediction techniques; failure based reliability; etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper reports on the investigation of the rheological behaviour new lead-free solder pastes formulations for use in flip-chip assembly applications. The study is made up of three parts; namely the evaluation of the effect of plate geometry, the effect of temperature and processing environment and the effect of torsional frequencies on the rheological measurements. Different plate geometries and rheological tests were used to evaluate new formulations in terms of wall slip characteristics, linear viscoelastic region and shear thinning behaviour. A technique which combines the use of the creep-recovery and dynamic frequency sweep tests was used to further characterise the paste structure, rheological behaviour and the processing performance of the new paste formulations. The technique demonstrated in this study has wide utility for R & D personnel involved in new paste formulation, for implementing quality control procedures used in paste manufacture and packaging and for qualifying new flip-chip assembly lines

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The market for solder paste materials in the electronic manufacturing and assembly sector is very large and consists of material and equipment suppliers and end users. These materials are used to bond electronic components (such as flip-chip, CSP and BGA) to printed circuit boards (PCB's) across a range of dimensions where the solder interconnects can be in the order of 0.05mm to 5mm in size. The non-Newtonian flow properties exhibited by solder pastes during its manufacture and printing/deposition phases have been of practical concern to surface mount engineers and researchers for many years. The printing of paste materials through very small-sized stencil apertures is known to lead to increased stencil clogging and incomplete transfer of paste to the substrate pads. At these very narrow aperture sizes the paste rheology and particle-wall interactions become crucial for consistent paste withdrawal. These non-Newtonian effects must be understood so that the new paste formulations can be optimised for consistent printing. The focus of the study reported in this paper is the characterisation of the rheological properties of solder pastes and flux mediums, and the evaluation of the effect of these properties on the pastes' printing performance at the flip-chip assembly application level. Solder pastes are known to exhibit a thixotropic behaviour, which is recognised by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this time-dependent theological behaviour of solder pastes is crucial for establishing the relationships between the pastes' structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a number of methods which have been developed for characterising the time-dependent and non-Newtonian rheological behaviour of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modelling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder paste manufacture and packaging; and for qualifying new flip-chip assembly lines

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. The critical aspect in the manufacture of the optical backplane is the successful coupling between VCSEL (Vertical Cavity Surface Emitting Laser) device and embedded waveguide in the OECB. Optical performance will be affected by CTE mismatch in the material properties, and manufacturing tolerances. This paper will discuss results from a multidisciplinary research project involving both experimentation and modelling. Key process parameters are being investigated using Design of Experiments and Finite Element Modelling. Simulations have been undertaken that predict the temperature in the VCSEL during normal operation, and the subsequent misalignment that this imposes. The results from the thermomechanical analysis are being used with optimisation software and the experimental DOE (Design of Experiments) to identify packaging parameters that minimise misalignment. These results are also imported into an optical model which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the thermomechanical and optical models will be discussed as will the experimental results from the DOE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric car, the all electric aircraft and requirements for renewable energy are prime examples of potential technologies needing to be addressed in the world problem of global warming/carbon emission etc. Power electronics are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper presents a 'virtual' design methodology together with theoretical and experimental results that demonstrate enhanced product design with improved reliability, performance and cost value within competitive schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This presentation discusses latest developments in SiP technology and the challenges for design in terms of manufacture and reliability. It presents results from a UK government funded project that aims to develop modelling techniques that will assess the thermo-mechanical reliability of SiP structures such as (i) stacked die, (ii) side-by-side dies and (iii) embedded die. Finite element analysis coupled with numerical optimisation and uncertainty analysis is used is used to model the reliability of a particular package design. In particular, the damage (energy density) in the lead free solder interconnects under accelerated temperature cycling is predicted and used to observe the fatigue life-time. Warpage of the structure is also investigated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, when designing a ship the driving issues are seen to be powering, stability, strength and seakeeping. Issues related to ship operations and evolutions are investigated later in the design process, within the constraint of a fixed layout. This can result in operational inefficiencies and limitations, excessive crew numbers and potentially hazardous situations. This paper summarises work by University College London and the University of Greenwich prior to the completion of a three year EPSRC funded research project to integrate the simulation of personnel movement into early stage ship design. This integration is intended to facilitate the assessment of onboard operations while the design is still highly amenable to change. The project brings together the University of Greenwich developed maritimeEXODUS personnel movement simulation software and the SURFCON implementation of the Design Building Block approach to early stage ship design, which originated with the UCL Ship Design Research team and has been implemented within the PARAMARINE ship design system produced by Graphics Research Corporation. Central to the success of this project is the definition of a suitable series of Performance Measures (PM) which can be used to assess the human performance of the design in different operational scenarios. The paper outlines the progress made on deriving the PM from human dynamics criteria measured in simulations and their incorporation into a Human Performance Metric (HPM) for analysis. It describes the production of a series of SURFCON ship designs, based on the Royal Navy’s Type 22 Batch 3 frigate, and their analysis using the PARAMARINE and maritimeEXODUS software. Conclusions on the work to date and for the remainder of the project are presented addressing the integration of personnel movement simulation into the preliminary ship design process.